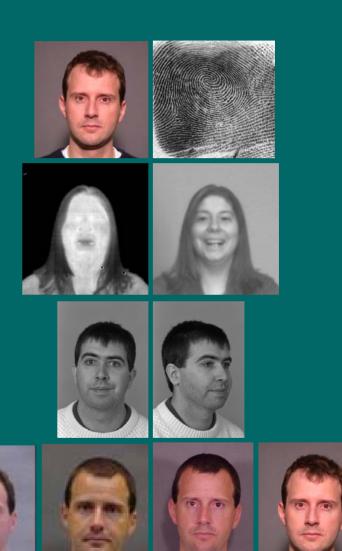
Roles for Multi-biometrics in e-Authentication

patrick.grother@nist.gov


Multi-biometrics

Multimodal

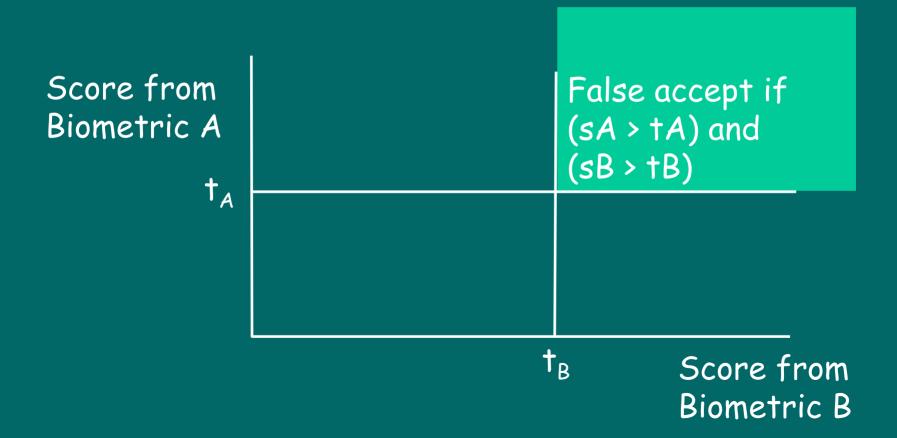
Multisensor

Multi-instance

Repeated-instance

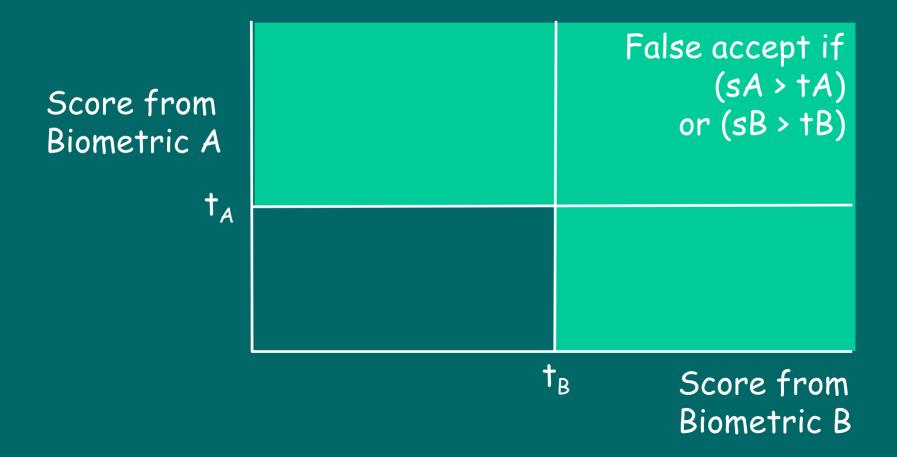
Fusion Taxonomy

- Decision Level
 - And, Or etc of decisions


- · Score Level
 - Sum, product etc of normalized scores

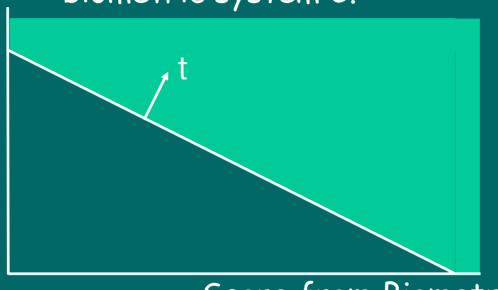
- Feature level
 - Vector space etc
- Image Level
 - Infra red + visible

- Easily implemented, lacks some power, but universally available.
- Best tradeoff between ease of implementation and power. Universally available.
- Theoretically best, done before matching, uncommon, sometimes no known means of doing so


And Rule Fusion

Impostor gains access if he defeats biometric systems A AND B

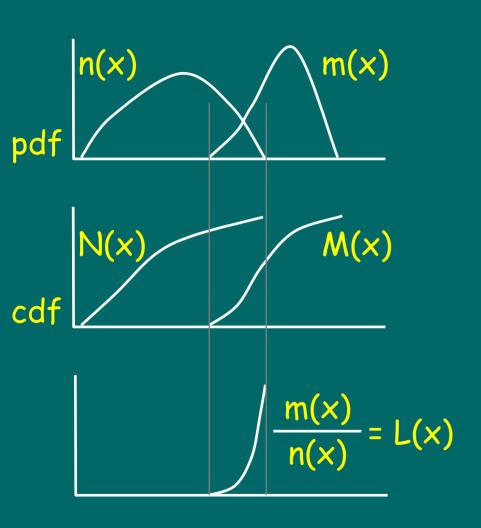
Or Rule Fusion


Impostor gains access if he defeats biometric systems A OR B

Sum Rule Fusion

Impostor gains access if he defeats combined biometric system C.

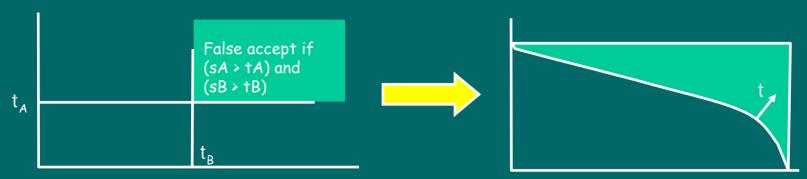
Score from Biometric A


Score from Biometric B

Effect a nonlinear boundary by suitable transformation of the scores:

$$s = F_A(s_A) + F_B(s_B)$$

$$s = F_A(s_A) \cdot F_B(s_B)$$


Optimal Score Fusion

- Bayes optimal for uncorrelated biometrics
- Use of likelihood ratio allows relative "strength" of the (two) biometrics comes out in the wash without ad hoc weighting

Fused score: $s(x) = \log L_A(x) + \log L_B(x) + ...$

Infrastructure

Decision level fusion: Access if defeat A, then defeat B

- Retrofit BioAPI to allow propagation of scores between application, BSPs, and fusers.
- Establish fusion module as a BioAPI entity
- Need, also, data format for statistical fusion information.

Score level fusion:
Access if defeat A, then defeat B
but with forwarding of score from A
to a fusion module.

- Activity to establish elementary formats to support multi-biometrics is starting in M1.2
 - Score
 - Threshold
 - Fusion Information Format
 - Candidate Lists for Ident

Conclusions so far

- Large literature demonstrating that fusion techniques produce lower (FAR,FRR)
 - If systems behave (fail, succeed) independently then fusion can have maximum effect.
- Score-level fusion is much more potent that decision level
 - But some evidence that even (face + finger) and (finger + iris) are partially correlated, due to human-sensor interaction etc.
- Score-level fusion is favored over feature level fusion for black box reasons:
 - Implementation is easy.
 - Post-match fusion avoids IP licensing or exposure.
- · Also:
 - Multi-algorithmic: Face Corp A + Face Corp B + . . .
 - Multi-sample: N views
- BioAPI can be amended to handle multi-biometrics

A Multibiometric

How many biometrics here?

- 1 Face
- 2 Irises
- 3 Skin texture
- 4 Head shape
- 5 Ears
- 6 Scars
- 7 Anything else unique
 - · Far infrared
 - Hyperspectral

Spoofing

- · What, then, to spoof?
 - Spoof whatever biometric the system is using
 - Or, more relevantly, what it is sensitive to

- These things aren't necessarily obvious to an attacker
 - Might need access to device
 - Might not: Hill climbing attack.

Definitions of "biometric"

BioAPI (SC37 N651): "biometric"

The physical part of the body or behavioural action that is sensed by a biometric sensor device resulting in the capture of a raw biometric sample.

SC37 SD2 (N649): "biometrics"

the automated recognition of individuals based on their behavioral and biological characteristics

SP 800-63: "biometric"

An image or template of a physiological attribute (e.g. a fingerprint) that may be used to identify an individual. In this document, biometrics may be used to unlock authentication tokens and prevent repudiation of registration.

Keywords: behavioural, physiological

Challenge Response

- Application challenges user to submit samples from N of M biometrics.
- Examples:
 - In real-time switch requirement from face to finger to hand geometry
 - Specify a combination of fingers
- · Claims:
 - An attacker would need to spoof all N biometrics
 - · but can we be sure N-1 would be not be sufficient
 - Ameliorates liveness
- · Problems:
 - We don't have that many (viable) biometric traits, so N is a small multiplier.
 - Expense. Need to collect and enroll samples of all M biometrics. Up to M vendors and M possible attacks against implementation.

Challenge Response II

- User appears before camera
- · User is instructed to utter either:
 - Server generated text
 - A (secret) passphrase
- · Perform:
 - Face verification
 - Speaker verification
 - Lip dynamic recognition
 - Appropriate fusion of these three
 - Unlike "static" biometrics, A/V speech can't be detached from the body by the determined imposter.

Watermarking

- Embed transformed version of biometric A in a sample of biometric B:
 - Example: Hide a face's KL coefficients in a fingerprint image
- · Multimodal:
 - Match A; optionally recover and match B too: fuse.
- Can be spoofed if either:
 - attacker is aware watermarking is in use, and
 - can implement the watermarking algorithm, and
 - has samples of both A and B.
- or:
 - Has stolen a correctly watermarked image

Summary

- Multi-biometrics offers lower error rates (FAR, FRR)
- challenge response
 - system demands submission of M of N enrolled biometrics
- · challenge response with behavioural biometrics:
 - speech and lip movement as passphrase
 - signature / sign as passphrase
- Single body parts can be sensed separately and simultaneously
- watermarking (covert inclusion of biometric within another)
- Recognize the perfect biometric when it comes along!